Реклама





Рефераты по философии

Эвристические функции законов сохранения

(страница 4)

Таким образом, согласно гипотезе Паули нейтрино явилось той частицей, которая компенсировала как недостающую энергию, так и спин. В дальнейшем был уточнен и закон сохранения импульса на основе допущения, что импульс ядра отдачи должен быть равен по величине и направлен противоположно суммарному импульсу электрона и нейтрино.

В одном из своих более поздних выступлений Паули подчеркнул, что он всегда был против того, чтобы решать какие бы то ни было трудности в физических проблемах путем отказа от закона сохранения энергии: "Во-первых, я считаю, что аналогия между законами сохранения энергии и сохранения электрического заряда имеет глубокое значение и может являться надежной руководящей нитью. Вряд ли можно, отказавшись от закона сохранения энергии, сохранить закон сохранения электрического заряда, а этот последний закон никогда еще не приводил ни к каким затруднениям. Поэтому я с самого начала отказывался верить в нарушение сохранения энергии".

Гипотеза Паули о нейтрино была изложена впервые в печати с его разрешения двумя участниками семинара Карлсоном и Оппенгеймером в 1932г., а год спустя автор ее, выступая на седьмом Сольвеевском конгрессе, посвященном теме "Строение и свойства атомных ядер", обстоятельно доложил участникам конгресса о тех предпосылках, которые привели его к столь необычной гипотезе).

В 1934 г. итальянский физик Э. Ферми на основе гипотезы о нейтрино и протонно-нейтронной схемы строения атомного ядра создал теорию b-распада, которая успешно объяснила все основные черты этого процесса. В последующие годы много усилий было затрачено на экспериментальное доказательство существования нейтрино. Сначала эти доказательства были получены косвенно, а в период 1953-1955 гг. путем постановки довольно сложных экспериментов американские физики Коуэн и Ройнее обнаружили нейтрино в свободном состоянии.

Вот что говорит физическая энциклопедия о нейтрино.

"Представление о нейтрино введено в 1930 швейцарским физиком В. Паули с целью объяснить непрерывный энергетический спектр электронов при b-распаде: общие принципы квантовой механики и закон сохранения энергии требовали, чтобы электроны имели определенную энергию, равную энергии, выделяемой при b-распаде. Согласно гипотезе Паули, в b-распаде вместе с электроном рождается новая нейтральная сильно проникающая и, следователь- но, трудно обнаружимая частица с массой <0.01 массы протона. Распределение дискретной порции энергии между нейтрино и электроном и приводит к нарушению моноэнергетичности спектра электронов. Для того чтобы соблюдался и закон сохра­нения момента кол-ва движения, новой частице приписали полуцелый спин. . В 1932 Ферми предложил называть новую частицу "нейтрино" (уменьшительное от нейтрон) [4].

Решение проблемы b-распада окончательно убедило физиков в том, что классические законы сохранения энергии, импульса и момента количества движения выполняются столь же неукоснительно в микромире, как и в макромире. Что касается других двух законов сохранения - массы и электрического заряда, то их выполнение в микромире не вызывало сомнений начиная с 1919 г., когда Резерфорд произвел первое искусственное расщепление атомного ядра азота, бомбардируя его a-частицами.

§ 3.Специфические законы сохранения в теории элементарных частиц.

Квантовая механика вскрыла специфические закономерности движения и превращения так называемых элементарных частиц. Эти закономерности не сводятся с закономерностям классической механики, и поэтому естественно ожидать, что в микромире наряду с классическими законами сохранения должны действовать свои законы сохранения. Открытие этих законов связано с развитием наших знаний о свойствах элементарных частиц.

Известные в настоящее время элементарные частицы можно объединить в группы, разделение на которые определяется не только различием в массах, но и рядом других существенных свойств (например, спином): фотон, лептоны (в группу лептонов входят два вида нейтрино и антинейтрино, электрон, позитрон), мезоны, барионы.

В 1952 г. группа физиков под руководством Э. Ферми обнаружила первую частицу из открытой большой группы частиц с очень малым временем жизни, так называемых резонансов. Эти образования возникают при сильном взаимодействии элементарных частиц. По мнению известного американского теоретика М. Гелл-Мана, общее число резонансов должно достигать нескольких тысяч. Вновь возник вопрос об "элементарности" частиц.

Было выдвинуто несколько гипотез, смысл которых состоит в том, что все многообразие частиц сводится к нескольким фундаментальным частицам. Наибольшее распространение получила гипотеза Гелл-Манна и Цвейга.

Согласно этой гипотезе все барионы и мезоны рассматриваются как частицы, состоящие из комбинации трех фундаментальных частиц (и их античастиц), которые Гелл-Манн назвал кварками.

На основе гипотезы кварков уже удалось разрешить некоторые трудности теории элементарных частиц. Но попытки экспериментального обнаружения кварков пока еще не увенчались успехом.

В связи с попытками объяснить, почему одни превращения элементарных частиц возможны: а другие нет, было также обобщено и понятие электрического заряда. Вигнер ввел понятие о барионном числе как квантовом числе, равном +1 для нуклонов, -1 для антинуклонов и 0 для p-мезонов. Физическая природа сохранения барионного числа в настоящее время не выяснена, поскольку неизвестны те свойства симметрии, которые обусловливают действие этого закона.

Для легких частиц (лептонов) введено аналогичное понятие лептонного числа, закон сохранения которого выполняется только в слабых взаимодействиях. Также имеют место и законы сохранения изотопического спина и закон сохранения "странности".

Можно с полным правом утверждать, что на современном уровне развития схема "принцип симметрии - инвариантность - закон сохранения" превратилась в руководящий принцип и является наиболее полным выражением идеи сохранения. Современный физик, исследуя явления в мире элементарных частиц, считает свою работу завершенной, если он может сформулировать закономерности экспериментального материала в краткой форме законов сохранения".

В заключение надо сказать, что принципы симметрии в микромире являются более сложными и глубокими: чем в макромире. Однако, тот факт, что в микромире выполняются все классические законы сохранения, по-видимому, указывает на то, что свойства симметрии пространства-времени в масштабах микромира принципиально не должны отличаться от их свойств в макромире.

Важно отметить и следующее обстоятельство. Теоретической основой вывода законов сохранения классической физики являлись законы Ньтона. Сохраняющиеся величины фигурируют здесь в качестве основных характеристик движущегося тела или системы. Вывод этих законов из принципов симметрии - логическое завершение длительной эволюции физики на протяжении столетий. Важнейшим уроком этой эволюции явился более глубокий подход к законам сохранения, полностью оправдавший себя в физике микромира. Оказалось, что законы сохранения можно получать непосредственно из принципов симметрии, минуя законы движения.

ЗАКЛЮЧЕНИЕ.

В обзоре законов сохранения, действующих в физике микромира, мы не имели возможности коснуться всех вопросов теории элементарных частиц. Это и не входило в нашу задачу. По этому поводу только за последние годы появился ряд превосходных обзоров и монографий, написанных выдающимися учеными, как отечественными, так и зарубежными. Мы ограничимся лишь несколькими заключительными замечаниями относительно специфических законов сохранения в микромире.

Закон сохранения и превращения энергии, закон сохранения импульса, закон сохранения момента количества движения и закон сохранения электрического заряда, так же как и закон сохранения массы, можно считать законами сохране­ния, имеющими силу как в области макромира, так и в области микромира. Это - законы сохранения, имеющие максимальную степень общности.

12345

Название: Эвристические функции законов сохранения
Дата: 2007-05-31
Просмотрено 14131 раз