Реклама





Рефераты по философии

Жизнь и деятельность Роберта Милликена

(страница 5)

Ре­во­лю­ция в об­лас­ти све­та

В пе­ри­од с 1921 по 1945 гг. Мил­ли­кен - ди­рек­тор Ла­бо­ра­то­рии Нор­ма­на Брид­жа Ка­ли­фор­ний­ско­го тех­но­ло­ги­че­ско­го ин­сти­ту­та.

В 1921 го­ду Аль­берт Эйн­штейн был удо­стоен Но­бе­лев­ской пре­мии за раз­ра­бот­ку тео­рии, объ­яс­нив­шей фо­то­элек­три­че­ский эф­фект. Спус­тя два го­да Ро­берт Мил­ли­кен полу­чил Но­бе­лев­скую пре­мию за про­ве­де­ние опы­та, под­твер­див­ше­го тео­рию Эйн­штей­на. Тео­рия Эйн­штей­на бы­ла вы­дви­ну­та в 1905 го­ду. Ве­ликий экс­пе­ри­мент Мил­ли­ке­на был про­ве­ден поч­ти де­сять лет спус­тя. Двой­ное при­су­ж­де­ние пре­мии оз­на­ча­ло ус­пех од­ной из са­мых вели­ких ре­во­лю­ций в об­лас­ти фи­зи­ки.

Иса­ак Нью­тон обо­га­тил фи­зи­ку дву­мя тео­риями: пер­вая ка­са­лась за­ко­нов дви­же­ния тел; со­глас­но вто­рой свет пред­став­лял со­бой ско­пище кро­шеч­ных час­тиц све­тя­щей­ся ма­те­рии. Пер­вая тео­рия Нью­то­на при­нес­ла ему репута­цию ге­ни­аль­но­го уче­но­го. И толь­ко бла­го­да­ря его пре­сти­жу бы­ла при­ня­та вто­рая тео­рия - о кор­пус­ку­ляр­ной струк­ту­ре све­та, хо­тя она бы­ла зна­чи­тель­но сла­бее пер­вой и объ­яс­ня­ла все­го два из всех из­вест­ных свойств све­та.

По Нью­то­ну, от­ра­же­ние - это про­сто от­ска­ки­ва­ние уп­ру­гих час­тиц све­та от отра­жающей по­верх­но­сти. Реф­рак­ция же, прелом­ление све­то­вых лу­чей при пе­ре­хо­де из ме­нее плот­ной сре­ды, та­кой, на­при­мер, как воз­дух, в бо­лее плот­ную, как, на­при­мер, во­да, име­ло ме­сто в ре­зуль­та­те из­ме­не­ния ско­ро­сти частич­ки све­та в мо­мент про­хо­ж­де­ния ее сквозь по­верхность бо­лее плот­ной сре­ды. Нью­то­нов­ская тео­рия све­та не мог­ла объ­яс­нить интерферен­ции, ди­фрак­ции и по­ля­ри­за­ции.

К на­ча­лу XVIII сто­ле­тия ста­ла привле­кать вни­ма­ние вол­но­вая тео­рия све­та, выдви­нутая со­вре­мен­ни­ком Нью­то­на - Гюй­ген­сом. По этой тео­рии свет со­сто­ит из виб­ра­ции в эфи­ре. Ве­ли­кий фран­цуз­ский фи­зик Фре­нель ма­тематически до­ка­зал, что ес­ли свет действи­тельно вол­но­вое яв­ле­ние, то все его наблюда­емые про­яв­ле­ния лег­ко мож­но объ­яс­нить. Спус­тя пол­сто­ле­тия Джемс Мак­свелл под­кре­пил вол­но­вую тео­рию све­та, тео­ре­ти­че­ски до­ка­зав, что свет яв­ля­ет­ся виб­ра­ци­ей элек­три­че­ских и маг­нит­ных волн. До по­след­не­го де­ся­ти­ле­тия XIX ве­ка в тео­рии Мак­свел­ла не бы­ло, каза­лось, ни­ка­ких про­ти­во­ре­чий.

В 1887 го­ду Герц за­ме­тил, что свет, осо­бенно ульт­ра­фио­ле­то­вые лу­чи, за­ря­жа­ли ме­таллические по­верх­но­сти элек­три­че­ст­вом. Том­сон до­ка­зал, что по­ло­жи­тель­ный за­ряд на по­верх­но­сти ме­тал­ла был след­ст­ви­ем мгновен­ного ис­пус­ка­ния им от­ри­ца­тель­но за­ря­жен­ных элек­тро­нов.

Аль­берт Эйн­штейн был един­ст­вен­ным фи­зиком, по­няв­шим, что в этом таи­лось проти­воречие, ко­то­рое вол­но­вая тео­рия све­та не мо­жет раз­ре­шить. В 1905 го­ду он вы­ска­зал пред­положение, что фо­то­элек­три­че­ский эф­фект мож­но объ­яс­нить, толь­ко воз­вра­тив­шись к кор­пускулярной тео­рии све­та, в ко­то­рую сле­ду­ет вне­сти не­ко­то­рые важ­ные из­ме­не­ния.

По мне­нию Эйн­штей­на, про­ти­во­ре­чие за­ключалось в сле­дую­щем: чем боль­ше све­та па­да­ет на ме­тал­ли­че­скую по­верх­ность, тем боль­ше вы­де­ля­ет­ся элек­тро­нов; од­на­ко энер­гия ка­ж­до­го от­дель­но­го элек­тро­на с из­ме­не­ни­ем ин­тен­сив­но­сти све­та не из­ме­ня­ет­ся, хо­тя, по тео­рии Мак­свел­ла, ин­тен­сив­ность све­та слу­жит ме­ри­лом его энер­гии.

Эйн­штейн пред­ло­жил сле­дую­щее объясне­ние: луч све­та со­сто­ит из по­то­ка кро­шеч­ных кор­пус­кул, ка­ж­дая из ко­то­рых не­сет опреде­ленную энер­гию. Энер­гия кор­пус­ку­лы пропор­циональна цве­ту, или, вы­ра­жа­ясь клас­си­че­ским язы­ком, час­то­те све­та, а не его ам­пли­ту­де, как за­яв­лял Мак­свелл. Ко­гда свет па­да­ет на твер­дое ве­ще­ст­во, не­ко­то­рые из эйнштейнов­ских кор­пус­кул энер­гии по­гло­ща­ют­ся. Коли­чество по­гло­щае­мой энер­гии в не­ко­то­рых слу­чаях ока­зы­ва­ет­ся на­столь­ко боль­шим, что элек­тро­ны по­лу­ча­ют воз­мож­ность по­ки­нуть ато­мы, в ко­то­рых они на­хо­ди­лись. Энер­гия этих ос­во­бо­ж­ден­ных “фо­то­элек­тро­нов” дол­жна по­это­му быть аб­со­лют­но рав­ной энер­гии пой­ман­ных кор­пус­кул све­та, на­зы­вае­мых “кван­та­ми”, ми­нус ко­ли­че­ст­во энер­гии, нуж­ной для то­го, что­бы вы­рвать элек­тро­ны из ато­мов.

Это по­след­нее ко­ли­че­ст­во, “ра­бо­та вы­хо­да”, мо­жет быть не­по­сред­ст­вен­но из­ме­ре­но.

Эйн­штейн со­об­щит об этом в фор­ме урав­нения, в ко­то­ром бы­ла ус­та­нов­ле­на связь меж­ду ско­ро­стью вы­ле­тев­ше­го элек­тро­на, энерги­ей пой­ман­но­го кван­та све­та и с ра­бо­той вы­хо­да”.

“Та­кая кор­пус­ку­ляр­ная тео­рия, гово­рил Мил­ли­кен, - не бы­ла под­твер­жде­на экспе­риментально, за ис­клю­че­ни­ем на­блю­де­ний, про­ве­ден­ных Ле­нар­дом в 1900 го­ду и сво­дившихся к то­му, что энер­гия, с ко­то­рой элект­роны вы­ле­та­ют из цин­ко­вой пла­стин­ки, кажет­ся, не за­ви­сит от ин­тен­сив­но­сти све­та. Я ду­маю, пра­виль­но бу­дет ска­зать, что мысль Эйн­штей­на о кван­тах све­та, не­су­щих­ся в про­странстве в фор­ме им­пуль­сов, или, как мы на­зываем их те­перь, “фо­то­нов”, при­бли­зи­тель­но до 1915 го­да не име­ла прак­ти­че­ски ни од­но­го убе­ж­ден­но­го сто­рон­ни­ка.

То­гда, на тех ран­них эта­пах, да­же сам Эйн­штейн не от­стаи­вал эту мысль с достаточ­ной ре­ши­тель­но­стью и оп­ре­де­лен­но­стью”.

Мил­ли­кен то­же да­ле­ко не был убе­ж­ден в пра­во­те Эйн­штей­на, но, по­сколь­ку ла­бо­ра­то­рия в Чи­ка­го, ру­ко­во­ди­мая Май­кель­со­ном, про­во­ди­ла очень мно­го экс­пе­ри­мен­тов, основан­ных на вол­но­вой тео­рии све­та, Мил­ли­кен ре­шил раз и на­все­гда про­ве­рить ги­по­те­зу Эйн­штейна.

“Как толь­ко я вер­нул­ся в свою лаборато­рию осе­нью 1912 го­да, - пи­сал Мил­ли­кен, - я при­сту­пил к кон­ст­руи­ро­ва­нию но­во­го аппара­та, при по­мо­щи ко­то­ро­го мож­но бы­ло бы по­лучить убе­ди­тель­ное ре­ше­ние про­бле­мы это­го фо­то­элек­три­че­ско­го урав­не­ния Эйн­штей­на. Я поч­ти не на­де­ял­ся, что ре­ше­ние, ес­ли толь­ко я его по­лу­чу, бу­дет по­ло­жи­тель­ным. Но во­прос был чрез­вы­чай­но важ­ным, и най­ти ка­кое-то ре­ше­ние бы­ло не­об­хо­ди­мо. Я на­чал фо­тоэлектрические ис­сле­до­ва­ния в ок­тяб­ре 1912 го­да, и они за­ня­ли прак­ти­че­ски все мое вре­мя, ко­то­рое я по­свя­щал ис­сле­до­ва­ни­ям на про­тя­же­нии по­сле­дую­щих трех лет”.

Вся труд­ность сво­ди­лась к то­му, что­бы оп­ре­де­лить, в ка­кой за­ви­си­мо­сти на­хо­дит­ся энер­гия от цве­та, или час­то­ты. Эйн­штейн го­ворил, что эта за­ви­си­мость бы­ла пря­мой: энер­гия рав­на час­то­те, по­мно­жен­ной на оп­ре­де­лен­ное чис­ло. Это “оп­ре­де­лен­ное чис­ло” бы­ло по­стоянным для лю­бо­го пас­та. Оно долж­но бы­ло быть при­род­ной кон­стан­той. Эйн­штейн приме­няя для это­го чис­ла обо­зна­че­ние h из ува­же­ния к сво­ему кол­ле­ге Мак­су План­ку.

За не­сколь­ко лет до это­го Макс Планк пер­вый су­мел ре­шить тео­ре­ти­че­скую про­бле­му в об­лас­ти ра­диа­ции, про­из­воль­но за­ме­нив в фор­му­ле член, обо­зна­чаю­щий энер­гию, дру­гим чле­ном, в ко­то­рый вхо­ди­ли обо­зна­че­ния часто­ты и этой са­мой по­сто­ян­ной ве­ли­чи­ны. Планк обо­зна­чил эту ве­ли­чи­ну че­рез h и рассматри­вал всю опе­ра­цию лишь как удоб­ный мате­матический при­ем, ко­то­рый по­мог ему ре­шить за­да­чу. Эйн­штейн же уви­дел, что Планк не­воль­но сде­лал зна­чи­тель­но боль­ше. При по­мо­щи “ма­те­ма­ти­че­ско­го прие­ма” План­ка про­бле­ма ре­ша­лась - зна­чит, он точ­но от­ра­жал ис­тин­ное по­ло­же­ние ве­щей.

Эйн­штейн при­дал это­му прие­му бу­к­валь­ное зна­че­ние, и его фо­то­элек­три­че­ское урав­не­ние ста­ло пер­вым не­по­сред­ст­вен­ным при­ме­не­ни­ем но­вой кван­то­вой тео­рии. Мил­ли­кен ре­шил про­верить тео­рию Эйн­штей­на, по­пы­тав­шись полу­чить от­ве­ты на сле­дую­щие три во­про­са:

1. Дей­ст­ви­тель­но ли энер­гия кван­та све­та рав­на час­то­те све­та, взя­той h раз?

2. Яв­ля­ет­ся ли чис­ло h дей­ст­ви­тель­но по­стоянной ве­ли­чи­ной для всех цве­тов?

123456

Название: Жизнь и деятельность Роберта Милликена
Дата: 2007-06-09
Просмотрено 11435 раз