Реклама





Рефераты по философии

Физика и философия

(страница 3)

Далее В. Гейзенберг пишет: «Кант задает неприятный вопрос: «А существует ли мир вещей вообще?» Ответ на него Кант находит в представлениях об априорных формах. Априорные формы это такие схемы познания, которые всегда присутствуют при любом акте познания. По Канту невозможно помыслить их отсутствие или неабсолютность. Такими формами являются сам мир вещей и явлений, закон причинности и пространство. Если мы, например, попытаемся представить, что существует несколько пространств или его не существует, то все равно множественное будет находиться в каком-то другом пространстве, а вместо отсутствующего пространства придет пустое, но все равно пространство. Аналогичная ситуация происходит с законом причинности.

Пространство и закон причинности считались априорными формами вплоть до развития современного физического мировоззрения. Естественно, что во времена Канта их никаким иным образом нельзя было и помыслить.

Пространство в квантовой теории можно отнести к априорной форме. В этой схеме познания происходит рассмотрение движения частиц, протекания процессов.

Гораздо труднее дело обстоит в общей теории относительности. Пространство оказывается зависимым от расположения масс. Кривизна пространства оказывается переменной и определяется тем, насколько массивное тело находится в данной точке. Проводились попытки провести экспериментальное доказательство искривления пространства вблизи больших масс. Так при солнечном затмении наблюдается смещение положения звезд. Конечно, наблюдаемые явления могут быть объяснены не только искривлением световых лучей, проходящих вблизи Солнца, но факт остается фактом.

Квантовая теория лишает статуса априорности закон причинности. Как было уже сказано, поведение элементарных частиц описывается только статистически в силу неполноты нашего знания. Тем не менее, утверждать, что, то или иное движение, положение частицы имеет свои причины неверно. Изменение координаты частицы не имеет никакой причины! Мир недетерминирован. Такой взгляд на вещи совершенно не соответствует классическим представлениям и прежней физики и философии.

Надо заметить, что сказанное выше не отнимает у пространства и закона причинности статуса априорности полностью. Описание и осмысление любого эксперимента, прибора, результатов опыта невозможно без использования привычных терминов и категорий. Поэтому на макроскопическом уровне пространство и закон причинности являются априорными формами. Таким образом, границы применимости априорных форм четко обозначены уровнем исследования.

Сложившаяся ситуация показывает, насколько трудно подчас бывает пользоваться словами для описания реальности. Образы, рождаемые этими словами в нашем сознании, неточно описывают реальность. Определение, которое можно дать слову, выражающему понятие, будет работать только в границах применимости этого понятия. Гораздо труднее определить эти границы применимости.

«Откуда у нас возникли такие понятия, как пространство, время, причинность?» – спрашивает В. Гейзенберг. Они унаследованы от предков, как результат всей предшествующей культуры. Устойчивость и всеобщность этих понятий позволяют считать их действительно априорными, не забывая при этом о границах применимости.

В конце данной главы В. Гейзенберг резюмирует.

1. Рациональность имеет в своей природе агностицизм.

2. Значения слов не могут точно определить отношение к некоторой реальности.

3. Понятия можно точно определить, но нельзя определить точно границы их применимости.

4. Имеющиеся понятия суть инструмент познания и унаследованы от предков. В силу этого их можно считать априорными.

Соотношения квантовой теории и других областей современного естествознания.

Всякая научная дисциплина представляет собой замкнутую систему понятий. Понятия этой системы образуют базис данной научной дисциплины и позволяют делать выводы, оперируя с ними по определенным правилам. Эти системы самодостаточны.

Интересным является вопрос о соотношении этих систем, что, по сути, является проблемой взаимоотношения различных наук. Каждая система, несмотря на свою самодостаточность, имеет некоторые общие элементы (понятия) с другими дисциплинами. На базе этих общих элементов строится междисциплинарное взаимодействие. Для правильного понимания проблемы взаимодействия наук, её стоит рассмотреть в историческом плане.

Самой стройной и точной естественной наукой два с половиной века назад была ньютоновская механика. В систему ее понятий входили такие понятия как материальная точка, время, равномерное движение, сила, инерциальная система отсчета, масса, ускорение. Адекватность действительности этих понятий не подлежала сомнению. Более того, время и расстояние считались абсолютными. Многие понятия ньютоновской механики были успешно использованы в других науках, о которых будет сказано ниже.

Теория теплоты. Как ни странно сейчас это может показаться, теория теплоты многое использовала из ньютоновской механики. Теплопередача и нагретость рассматривались в контексте скорости движения и соударения молекул.

Многие другие области знания, вплоть до психологии, так же пытались рассматривать в контексте системы понятий механики.

Обособленно от механики стояли оптика, электродинамика и магнетизм Максвелла.

Ситуация совершенно поменялась когда была разработана специальная теория относительности, которая лишила статуса абсолютности время и пространство. Надо четко понимать, что специальная теория относительности никоим образом не противоречит ньютоновской механике, а частично ее включает. Относительность пространства и времени проявляются только при определенных условиях: при движении тела со скоростью приближающейся к скорости света в вакууме.

Еще одной системой понятий была теория волн Де Бройля. Она в основном оперировала понятием волны и была предшественницей квантовой теории.

Но вот настало время квантовой теории. Теория посягает на святая святых классической механики: на возможность точно рассчитать траекторию частицы в любой момент времени, отталкиваясь только от исходных данных об импульсе и координате. Вводится понятие вероятностного знания. Факт наблюдения оказывает влияние на вероятный исход следующего наблюдения. Оказывается, что квантовая механика полностью включает в себя классическую, которая является её частным случаем, при определенных условиях.

В. Гейзенберг предлагает проследить теперь соотношения замкнутых систем понятий различных наук.

Около ста лет назад физика и химия имели довольно мало общего. Химия имело дело с превращениями веществ, и оперировала с такими понятиями как кислота, основание, соль и другими. Физика, в лице ньютоновской механики, как было уже показано выше, оперировала с понятиями материальной точки, скорости, инерциальной системы отсчета. Со временем развитие физики, и в основном квантовой теории, а так же химии, привели к тому, что эти науки сильно сблизились. Теперь при рассмотрении химического процесса используются такие физические понятия, как потенциал, энергия реагирующих частиц, кванты света. Возникает некое ощущение, что со временем возникнет объединенная наука о веществе, включающая в себя и химию и физику[iii].

Возникает законное желание, в конечном счете, свести биологию к химии, а затем и к физике. Несомненно, многие химические понятия в современной биологии представляют собой часть базиса этой науки. Например, окисление, восстановление и множество других.

На деле оказывается, что понятия химии и физики не в состоянии полно описать все биологические явления. В качестве примера следует указать на феномен жизни, который никак не сводится ни к физическим, ни химическим понятиям. При исследовании феномена жизни оказывается, что пока о нем ничего серьезного сказать невозможно, так как всякое глубокое исследование живого объекта лишает его жизни.

Биология вводит понятие фактора истории. Здесь имеется в виду то, что свойства системы, биологической системы, зависит от ее истории развития. Таким образом, на сегодняшний день пока невозможно создать замкнутую систему понятий, объединяющую физику, химию и биологию.

123456

Название: Физика и философия
Дата: 2007-05-31
Просмотрено 20554 раз